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Unfolded band structures of photonic quasicrystals and moiré superlattices
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We apply the band-unfolding approach to explore the dispersions of different types of photonic quasiperiodic
structures, including photonic quasicrystals that have high-rotational symmetry but lack translational symmetry,
and moiré superlattices, which are a twist of two primary lattices. The band-unfolding approach provides a
simple picture to get the band structure of such quasiperiodic structures, which can be directly compared with
experimental results. We envision this approach will be a basic method for introducing the rich concepts of
photonics in condensed-matter physics to photonic quasiperiodic systems.
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I. INTRODUCTION

Photonic crystal, one of the most widely known arti-
ficial materials, has attracted continuous attention for its
unique properties over the past few decades. Various op-
tical phenomena such as light localization [1–3], complete
band gap [4–6], negative refraction [7–9], anomalous dis-
persion [10,11], and bound states in the continuum [12–20]
have been investigated, which provides a degree of freedom
for practical applications [21–28]. Recently, the exploration
of such fundamental concepts and exotic phenomena has
extended to complex photonic systems, such as moiré su-
perlattices and quasicrystals. These structures are considered
quasiperiodic structures, which are the intermedium between
photonic crystals and amorphous materials [29–31]. Photonic
quasicrystals have properties beyond the periodic structures
because of their high rotational symmetry, including topol-
ogy states [32–36] and high-charge polarization vortices [37].
Moiré superlattices have been especially concerned with light
localization [38–40], lasers [41], and slow light [42,43] for
their magic-angle flat bands [44].

To capture the underlying photonic properties of these
quasiperiodic systems, several theoretical models for dis-
persion calculation have been proposed, combined with
the coupled-mode theory [45] and the transfer matrix
method [46]. Another widely adopted investigating scheme of
such systems is the supercell model [38,40,47–54] in which
a certain block cluster (a supercell) in the target system is
extracted and arranged periodically. By applying supercell
model, the calculation method for periodic structures can be
extended to the quasiperiodic structures. In general, moiré
superlattices are classified into two types: Commensurate
and incommensurate superlattice. The case of commensurate
twisted angles of the two individual lattices naturally retains
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the periodicity, except that a smaller twisted angle is associ-
ated with the larger supercell [55,56] while, for the case of
incommensurate twisted angles, moiré superlattices have no
exact periodicity, similar to quasicrystals. It is necessary to
construct their periodically approximate structure to obtain
the supercell. Generally, to guarantee the accuracy of mod-
eling, a larger supercell is required to approach the target
structures [47]. However, the larger supercell corresponds to
a tinier Brillouin zone (BZ), which will lead to difficulties
in analyzing the dense folded band structures. The band-
unfolding approach can remedy this problem, which has been
successfully applied to alloy and impurity materials, van der
Waals heterostructures, and quasicrystals in electronic sys-
tems [57–62].

In this paper, we apply the band-unfolding approach
through the supercell model to photonic quasicrystals and
moiré superlattices. Using this approach, the band structures
of supercell BZ are unfolded into the primitive BZ constructed
by the first-order diffraction spots. The unfolded band mani-
fests the photonic properties of these quasiperiodic structures
and can be directly compared with experimental measure-
ments.

This paper is organized as follows: Details of the band-
unfolding approach for the photonic structure are presented
in Sec. II. Application examples of band-unfolding procedure
are given in Sec. III. In Sec. IV, the comparison of simulation
and experimental results are given; a brief conclusion of the
paper is presented in Sec. V.

II. THEORY OF BAND-UNFOLDING APPROACH

We first present the theory behind band-unfolding ap-
proach based on supercell model, which has been described
thoroughly for the electronic systems. This approach can be
introduced to complex photonic systems. In this approach,
the dense band structures distributed in the supercell BZ
(SBZ) would be unfolded into an expected primitive BZ
(PBZ). Figure 1 illustrates three different types of supercells
and corresponding reciprocal lattices of photonic structures.
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FIG. 1. (a) A 5×5 supercell of the square lattice. (c) A moiré-supercell of two twisted honeycomb lattices. (e) A square supercell of the
eightfold quasicrystal. The corresponding reciprocal vectors (RVs), SBZs and PBZs are plotted in (b), (d), and (f). Four basic RVs bl , one
first-order RV gI

[1000]
and one second-order RV gII

[1100]
are marked in (f).

Figure 1(a) shows a 5×5 supercell of a square lattice, which
is a repeating unit cell containing several primitive-cells.
Figure 1(b) shows the reciprocal lattices of a supercell (G,
gray dots), which correspond to a SBZ (gray square), and
primitive cell (g, blue dots) associated with a PBZ (blue
square). Similarly, a moiré supercell of two honeycomb lat-
tices with a commensurate twisted angle is plotted in Fig. 1(c),
and the corresponding reciprocal lattices of the moiré super-
lattice (G, gray dots) and two honeycomb lattices (g, blue
and red dots) are plotted in Fig. 1(d). The SBZ and PBZ are
denoted as gray, blue, and red hexagons. Figure 1(e) shows
a square supercell of eightfold quasicrystals from periodic
approximation (details as below), which exhibits quasiperi-
odicity in certain directions internally. Figure 1(f) shows the
reciprocal lattices of supercell (G, gray dots) that correspond
to a square SBZ, and quasiperiodic lattices (g, red dots) asso-
ciated with a octagonal PBZ.

Here we denote the basic reciprocal vectors (RVs) of su-
percell lattices as {Bl}, corresponding to lattice vectors {Al}.
The arbitrary RV, G, can be denoted as

G =
∑

l

ql Bl , ql ∈ Z. (1)

Similarly, the RV, g, of the primitive cell can be written as

g =
∑

l

pl bl , pl ∈ Z, (2)

where bl is the basic RV associated with a set of primitive
lattice vectors al , which can be identified as integer multiples
of {Bl} based on the geometrical relation. For periodic lattices,
two or three vectors bl are used for summation in the Eq. (2).

For quasicrystals and moiré structures, at least four bl are
necessary. As an example, four bl of eightfold quasicrystals
with periodic approximation are marked as b1, b2, b3, and b4

in Fig. 1(f). To show the composition of bl in g, we can mark g
by a subscript as g[p1 p2...]. Meanwhile, we can classify the RVs
in terms of order index, which is defined as r = ∑

l |pl |, and
labeled by their superscript as {gr}. Specifically, a first-order
RV, gI

[1000]
, is marked in Fig. 1(f). And a second-order RV,

gII
[1100]

= b1 − b2, is illustrated.
It is worth noting that the PBZ of moiré structures and

quasicrystals are different from that of periodic lattices which
possess well-defined primitive cell. Obviously, the supercells
of these complex structures cannot be seen as repeats of any
primitive cell, especially the supercell of quasicrystals which
is constructed from periodic approximation. But we can still
define the PBZ in terms of intrinsic diffraction spots of the
structure that originate from constructive wave interferences,
even lack of periodicity [31,63]. For moiré structures, their
PBZ consists of two twisted individual BZ corresponded to
two sets of reciprocal lattices. For quasicrystal, the defini-
tion of PBZ is ambiguous. An ideal quasicrystal exhibits
no strict BZ, while an effective BZ can be constructed by
defining a polygon in reciprocal space, which is formed from
the lines bisecting the basic RVs [63]. This BZ is referred
to as the pseudo-BZ where the photonic dispersions govern
the fundamental properties of whole structures. Considering
that the pseudo-BZ is not directly related to the SBZ from
supercell model, we naturally apply the basic RVs {bl} of
periodic approximant to construct PBZ for band-unfolding.
To make a distinction, we denote {̃bl} as the basic RVs of the
ideal quasicrystal. As the order of approximation increases,
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those approximate vectors bl approach b̃l , the corresponding
approximate structure approach ideal structure, and its PBZ
approach the pseudo-BZ of ideal quasicrystal (see below).

The wave vector of SBZ (PBZ) can be denoted as �K (�k),
which obeys the unfolding relation:

�ki = �K + Gi. (3)

Equation (3) indicates that one SBZ vector �K can be unfolded
to multiple PBZ vectors �k, which is marked by a subscript
i, and this procedure is referred to as the unfolding of wave
vector [59]. The eigenmodes of SBZ and PBZ are denoted
by | �K, ω〉 and |�k, ω〉, respectively. According to the Bloch’s
theorm, one supercell mode | �K, ω〉 can be written as

| �K, ω〉 = u �K (r)ei �K ·r = ũ �K+Gi
(r)ei( �K+Gi )·r, (4)

where ũ �K+Gi
= u �K e−iGi ·r with a vector Gi. Equations (3)

and (4) suggest that the mode | �K, ω〉 lying in the SBZ may be
represented as | �ki, ω〉 in PBZ if its eigenfield possesses Bloch
character �ki.

The probability of mode | �K, ω〉 having the same Bloch
character as a PBZ mode of wave vector �ki is defined by the
spectral weight P�K (�ki ) [59,64],

P�K (�ki ) = | 〈�ki, ω| �K, ω〉 |2, (5)

which is calculated by projecting | �K, ω〉 on | �ki, ω〉 of a fixed
�ki. By adopting a plane-wave expansion for mode | �K, ω〉, the
spectral weight can be further written as

P�K (�ki ) =
∑

g

|C �K (g+�ki − �K )|2, (6)

where C �K is the plane wave coefficient. Recalling Eqs. (3)
and (4), C �K is obtained by

C �K (g + �ki − �K ) =
∫

d3ru �K (r)e−i(g+Gi )·r

=
∫

d3rũ �K+Gi
(r)e−ig·r, (7)

where the integration is performed over the supercell. The sec-
ond equality in Eq. (7) indicates the significance of nontrivial
P�K (�ki ), which is the Fourier transform pattern of ũ( �K+Gnm ) has
some diffraction spots overlapped with PBZ lattice vectors g,
as illustrated inthe Fig. 1 of Ref. [37].

Once thousands of SBZ eigenmodes and corresponding
spectral weights for certain vectors Gi have been calculated,
the band structures laying in the SBZ will be represented in
the PBZ, called band unfolding. In fact, the only unknown
condition for calculation of the spectral weight in Eq. (7)
is the geometrical relations between RVs g and vectors G
or, equivalently, the relation of the basic vectors bi to Bi.
Thus, when we apply the band-unfolding approach to specific
photonic systems, a key step is to determine these geometrical
relations of the basic RVs of SBZ and PBZ. The following
section will demonstrate the construction of those key rela-
tions for photonic quasicrystals and moiré structures.

III. APPLICATIONS

The implementation of the band-unfolding approach can
be summarized in the following steps: (1) Construct the tar-
get structures with periodicity in real space. (2) Extract the
supercell and determine the relation between g and vectors
G in reciprocal space. (3) Obtain the supercell eigenmodes
from numerical simulations (using software COMSOL MUL-
TIPHYSICS). (4) Caluclate the spectral weights. (5) Represent
the unfolded band structures. Note that for a 2D photonics
systems, the eigenfield Ez (Hz) of supercell modes is used to
calculate the spectral weight of TM (TE) modes. Especially,
for quasi-2D systems, like photonic slabs, the eigenfield Ez

(Hz) in the x − y plane is also used to calculate the spectral
weight of TM-like (TE-like) modes.

A. Photonic quasicrystals

For the quasicrystals, the lack of translational symmetry
makes it impossible to define a unit cell for band calculation.
The general treatment is to select a supercell containing the
features of quasicrystals and impose periodic boundary con-
ditions to investigate the approximate band structure. In other
words, we need to find a rational supercell as the repeating
unit-cell to construct the periodically approximate structure
of the quasicrystals. Therefore, the selection of supercells
is particularly important, which requires an approximation
criteria to evaluate whether the approximate structure is close
to ideal quasicrystals.

We begin with the construction of an ideal quasicrystal and
its approximate structures. A simple method to get the spatial
configuration of an ideal quasicrystal with two component
dielectric materials is the density-wave method based on the
reciprocal lattices [48–50]. In this method, the distribution of
dielectric constant is given by

ε(r//) =
{
ε1, Re[ρ(r//)] > t

ε0, Re[ρ(r//)] < t,
(8)

where r// is the in-plane position vector and t is a numerical
threshold to tune the filing ratio. The so-called density wave
is the sum of plane waves,

ρ(r//) =
∑

r

∑
m

Ar
meigr

m·r//+φr
m , (9)

where phases φr
m and amplitude Ar

m correspond to mth RVs
of r order, gr

m. The first two sets vector of {gI} and {gII} are
generally used. As an example, a structure of 12-fold photonic
quasicrystals with two components (refractive index of 1 and
1.5) constructed by this method is shown in Fig. 2(a). The
corresponding reciprocal lattices are plotted in Fig. 2(b). The
basic RVs are defined by

b̃l = 2π

a0

(
cos

(l − 1)π

6
, sin

(l − 1)π

6

)
; l = 1, . . . , 6, (10)

where the meaning of parameter a0 is the average lattice
constant in the direction of six basic RVs. These vectors of
{gI} and {gII} are denoted by blue and green rings in Fig. 2(b).

Then we consider constructing periodic approximants of
the quasicrystal. The complexity of the quasicrystal in real
space makes this issue not easily solvable. Considering the
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FIG. 2. Photonic quasicrystal and its periodic approximants. (a) A 2D 12-fold quasicrystal structure. (b) Reciprocal lattices. Six basic
reciprocal vectors are denoted by black arrows. (c), (d) Periodic approximants and corresponding reciprocal lattices of pn/qn = 1/1. (e), (f)
Periodic approximants and corresponding reciprocal lattices of pn/qn = 2/1. The suprecell for each approximant is marked as rhombuses. The
modified basic reciprocal vectors are also marked as same as in (b).

role of RVs in the density-wave method, we may complete
the construction of periodic approximants by modifying the
RVs. The key features of quasicrystals in the reciprocal space
are completely described by the basic RVs, which not only
reflect their rotational symmetry but also lead to the lack of
periodicity. Therefore, a set of modified basic RVs is required
to possess not only the rotational symmetry of quasicrystals
even approximately, but also the periodicity. In other words,
the core of construction of the periodic approximants is to
choose a set of basic RVs in a periodic lattice to approach that
of the ideal quasicrystal. Specifically, these modified vectors
are generated by changing the norm or direction of b̃l .

To form the periodic approximants of 12-fold quasicrys-
tals, we can choose their basic RVs in the hexagonal lattices.
This gives a better approximant than that from square, rect-
angular, or other periodic lattices, due to six being the largest
divisor of 12- and sixfold rotational symmetry being closer to
12-fold symmetry. A set of basic RVs, bl , is chosen as

b1 = (2pn + 3qn)B1,

b3 = (2pn + 3qn)B2,

b5 = (2pn + 3qn)(B2 − B1),
(11)

b2 = (pn + 2qn)(B1 + B2),

b4 = (pn + 2qn)(2B2 − B1),

b6 = (pn + 2qn)(B2 − 2B1),

where B1 = 4π (1/
√

3, 0)/A and B2 = 2π (1/
√

3, 1)/A are
basic RVs of the hexagonal lattice, and τn = pn/qn =

1/1, 2/1, 5/3, 7/4, 19/11 . . ., which is from continued frac-
tion expansion of the irrational number

√
3. As n → ∞, the

fraction series τn → √
3, these approximate vectors bl ap-

proach b̃l in Eq. (10), and the approximants approach the ideal
quasicrystals. It should be noted that norms of b2, b4, and b6

are not equal to that of b1, b3, and b5, which approximately
reflect the rotational symmetry of a 12-fold quasicrystal. The
resulting periodic approximants will possess the periodicity of
a hexagonal lattice and determine a rhombic supercell with a
sharp angle of π/3 and side length of A = a(2pn + 3qn) with
a = a0/sin(π/3).

Substituting Eq. (11) instead of Eq. (10) into Eq. (2), we
can easily obtain the periodically approximate structure of the
quasicrystal by using formulas of the density-wave method.
Structures of the first two order approximants pn/qn = 1/1
and 2/1 for 2D 12-fold photonic quasicrystal are plotted in
Figs. 2(c) and 2(e), and corresponding supercells are marked
as rhombuses. Compared with the structure in Fig. 2(a), those
structures in Figs. 2(c) and 2(e) possess supercells of different
sizes, while their approximation is easier to be evaluated by
the corresponding basic RVs. Figures 2(d) and 2(f) show the
basic RVs of a 12-fold quasicrystal of approximant pn/qn =
1/1 and 2/1. The red grid points denote the reciprocal lat-
tices of the hexagonal lattice, {G}. The first-order reciprocal
lattices, {gI}, and second-order ones, {gII}, are marked by
blue and green rings—same as in Fig. 2(b). Obviously, these
vectors in Fig. 2(f) are closer to that in Fig. 2(b) than in
Fig. 2(d). The similar periodic approximations for fivefold,
tenfold, and eightfold quasicrystals and corresponding vector
relations can be found in Refs. [47,49,65].
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FIG. 3. Band structures of 2D 12-fold photonic quasicrystals.
(a) Folded band structures of TM modes applied supercell calcula-
tions of pn/qn = 1/1. (b) Unfolded band structures in the PBZ. (c),
(d) Folded and unfolded band structures of pn/qn = 2/1.

Figure 3(a) shows the band structures of TM modes in the
SBZ calculated from the supercell of approximants pn/qn =
1/1. The unfolded band structures in the PBZ are shown in
Fig. 3(b). Similarly, the SBZ band structures and the corre-
sponding unfolded band structures for approximants pn/qn =
2/1 are shown in Figs. 3(c) and 3(d). The two results show
good agreement except for slight differences in details, which
indicates these periodic approximants appropriate for inves-
tigating the band structures of quasicrystals. As the order of
approximation increases, the unfolded band structures con-
verge to the dispersion of the ideal quasicrystal. In general,
the second-order approximant is enough for the accuracy
and appropriate simulation times. In addition, the scattering
strength of RVs {gI} is greater than that of {gII} (denoted
by sizes of diffraction spots); this contrast can be reflected
in the corresponding band structures by different gray scales.
In Figs. 3(b) and 3(d), the unfolded band structures of {gI}
and {gII} are marked by dark and light gray, respectively.
This point can also be verified experimentally in the extinction
spectrum.

B. Photonic Moiré superlattices

After applying the band-unfolding approach to photonic
quasicrystals, we rationally extend this approach into another
kind of complex photonic structures—-moiré superlattices,
due to the fact that a quasicrystal can be seen as a spe-
cial moiré superlattice [56]. Moiré superlattices are structures
composed of two or more identical lattices with a relative
in-plane twisted angle. For some special twisted angles, moiré
superlattice exhibits periodicity, but the length scale of its
unit-cell is much larger than that of original lattices, known
as commensurate moiré supercells [e.g., Fig. 1(c)]. When no

FIG. 4. Example of photonic moiré superlattice. (a) A mono-
layer slab structure of commensurate moiré superlattices of
(M = 4, N = 1). (b) Two sets of basic reciprocal vectors of square
lattices with a twisted angle 61.93◦. Red points present the reciprocal
lattices of moiré superlattice. (c) A moiré structure obtained from
density-wave method. (d) The PBZ of two twisted lattices and SBZ
(red square, namely, moiré-BZ). (e) Unfolded band structure for
supercell calculation of TM-like modes.

periodicity is retained, moiré superlattices are incommensu-
rate.

For the commensurate case, we consider that the moiré
superlattice consists of two square lattices. Its basic vectors
can be defined by [56,66]

A1 = Ma1 + Na2, A2 = −Na1 + Ma2, (12)

where M and N are integers; a1 and a2 are the lattice vectors
of a square lattice with the lattice constant a. The side length
of corresponding square moiré supercell is A = √

M2 + N2a
and the twisted angle is then written as

cos θ = 2MN

M2 + N2
. (13)

According to the reciprocity of real lattices and reciprocal
lattices, we can easily obtain the relation of basic RV between
moiré superlattice and original lattices. The basic RVs of
the moiré superlattices are denoted as B1 = 2π (1, 0)/A, B2 =
2π (0, 1)/A. Based on Eq. (12), the geometrical relations sim-
ilar to Eq. (11) are given by

b1 = MB1 + NB2, b2 = −NB1 + MB2,
(14)

b3 = NB1 + MB2, b4 = −MB1 + NB2,

where b1 and b2 denote basic RVs of one square lattices; b3

and b4 denote that of other lattices.
Figure 4(a) is example of a monolayer moiré structure

for a square lattice of M = 4, N = 1. Two arrays of holes
are arranged on a 2D dielectric slab (refractive index n = 2,
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FIG. 5. Comparison of calculated and measured band structures. Moiré superlattices of M = 2, N = 1 (a) and M = 4, N = 1 (b) for square
lattice, and M = 2, N = 1 (c) for hexagonal lattice. The supercells (top row) are used to calculate the eigenstates of SPP modes for these moiré
superlattices. The calculated band structures (second row) are consistent with these measured results (third row). The corresponding SEM
images are shown in the bottom-left corner.

thickness 100 nm). In fact, by applying Eqs. (8) and (9),
a structure with the same moiré feature can be constructed,
as shown in Fig. 4(c). Figure 4(b) shows the basic RVs of
these structures in Figs. 4(a) and 4(c). The red grid points
indicate the reciprocal lattices of the moiré superlattices, G.
In Fig. 4(d), the two large squares represent the PBZ and
red square is the SBZ which is also called the moiré-BZ or
mini-BZ in some Refs. [41,45]. The unfolded band structures
of TM-like modes in the PBZ are plotted in Fig. 4(e). Clearly,
bands along the direction of 	 − XS are unfolded into 	 − C1

and bands along the direction of 	 − MS are unfolded into
	 − C2, where C1 and C2 are the cross points of two PBZ.

For the incommensurate superlattice, a periodically ap-
proximate supercell is required, similarly to quasicrystals.
To construct the supercell of incommensurate superlattice,
the stretching or compression of one lattice is generally re-
quired, which has been studied in Refs. [62,67]. A special
case of incommensurate moiré superlattice consists of two
hexagonal lattices twisted by 30◦ which possesses 12-fold
rotational symmetry. Its approximate supercell can be gen-
erated using Eq. (11) for the similarity between this moiré
structure and the 12-fold quasicrystal. In fact, basic RVs of
b1, b3, and b5 in Eq. (11) correspond to a set of hexagonal
lattices, while b2, b4, and b6 correspond to another set of
hexagonal lattices with twisted angle of 30◦, and their norm
is stretched or compressed, noting that their norm is not equal
to the norm of b1. Thus, B1 and B2 are the basic RVs of
approximate moiré superlattice with a supercell. This method
of constructing the supercell is easily generalized to arbitrary
twisted angles of incommensurate moiré superlattices. After

that, the band-unfolding approach can be directly applied to
incommensurate moiré superlattices.

IV. COMPARISON WITH EXPERIMENTAL RESULTS

To verify the validity of the above methods, we exper-
imentally focused on the 2D plasmonic structures of the
moiré superlattices and quasicrystals to compare their un-
folded band structures with the measured results. Using
electron-beam lithography, the plasmonic structures are fabri-
cated by spin-coated polymethyl methacrylate (PMMA) thin
film on metallic substrate with air holes of moiré super-
lattices or quasicrystal patterns. The metallic substrate is a
200-nm-thick silver film evaporated on a silicon substrate,
and the PMMA film (refractive index of 1.5) is about 90 nm
thick. Their measured band structures, which are the angle-
resolved reflectance spectrums obtained from our homemade
momentum-space imaging spectroscopy system [68], are, re-
spectively, shown in the third row of Figs. 5 and 6(b) with
corresponding SEM images.

Figure 5 shows examples for commensurate moiré
structures of square and hexagonal lattices. The supercells of
a plasmonic moiré structure used to calculate the eigenmodes
are plotted in the top row of the Fig. 5. The generation
of an in-plane moiré pattern is similar to that of Fig. 4(c).
Two examples of a square lattice of M = 2, N = 1 and
M = 4, N = 1 are shown in Figs. 5(a) and 5(b). Similar
to the twisted square lattices, we can obtain the relations
of two sets of reciprocal basic vector for hexagonal
lattices: b1 = MB1 + NB2, b2 = −NB1 + (M + N )B2,
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FIG. 6. Comparison of calculated and measured band structures
of 12-fold plasmonic quasicrystal structure. (a) Calculated band
structure of SPP modes along 	 − K and 	 − M. (b) Schematic
view of supercell for approximant pn/qn = 2/1. (c) Measured band
structure with its SEM image in bottom-left corner. (d) Diffraction
pattern, six basic RVs are indicated as red arrows. (e) Measured
isofrequency contour at 570 nm [marked as dotted orange line
in (c)].

b3 = NB1 + MB2, and b4 = −MB1 + (M + N )B2, where B1

and B2 are basic vectors of hexagonal lattice with side length
A = a

√
M2 + N2 + MN [60]. The results of M = 2, N = 1

moiré structures for a twisted hexagonal lattice are shown
in Fig. 5(c). The hexagonal BZs of two regular lattices with
twisted angle 21.79◦and moiré-BZ of the superlattice are
plotted in the top-right corner. We can find good agreement
between these unfolded band structures (second row) and
measured band structures (third row).

We also show the example for plasmonic quasicrystals of
12-fold rotational symmetry. The calculated band structures
that is obtained from the first-order approximation pn/qn =
2/1 of the 12-fold quasicrystals with a supercell [Fig. 6(b)]
are plotted in Fig. 6(a). The measured band structures from
angle-resolved reflectance spectrum are plotted in Fig. 6(c)
with its SEM image in bottom-left corner. The comparison

shows that calculations agree well with measurements. In
addition, the spectrum shows the existence of several dimin-
ishing points at the 	 point, as pointed out by red arrows in
Fig. 6(c). The disappearance indicates that those modes are
hardly excited and are nearly decoupled from the free space.
In fact, those modes are quasibound states in the continuum,
i.e., leaky modes with high-quality factor and associate with
the polarization vortex in the momentum space of radiation
far-field, which is theoretically discussed in Ref. [37]. Mean-
while, the high-rotational symmetry of quasicrystals predicts
the manifestation of isotropy [48]. The diffraction pattern of
this structure is plotted in Fig. 6(d), and the six basic RVs
are indicated as red arrows. We can observe the near circular
isofrequency contour near the 	 point, as shown in Fig. 6(e).

V. CONCLUSIONS

In conclusion, we have employed a general approach to
investigate quasiperiodic structures and moiré superlattices,
which has effectively combined the techniques of super-
cell calculation and band unfolding. Such an approach not
only provides a global perspective in a regular-defined BZ
to analyze the photonic dispersions of those complex sys-
tems but also provides a better interface for comparison
between experimental measurements and numerical calcula-
tions. Furthermore, this approach can be employed to study
the topological properties of complex photonic structures that
have recently attracted enormous attention fueled by rapid
progress made in singular optics, topological photonics, in-
cluding singularities of phase and polarization of radiation
far-field, and phase transition from periodic to moiré super-
lattice and quasiperiodic systems.
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Soljačić, Nat. Rev. Mater. 1, 16048 (2016).

[15] H. M. Doeleman, F. Monticone, W. den Hollander, A. Alù, and
A. F. Koenderink, Nat. Photon. 12, 397 (2018).

[16] Y. Zhang, A. Chen, W. Liu, C. W. Hsu, B. Wang, F. Guan,
X. Liu, L. Shi, L. Lu, and J. Zi, Phys. Rev. Lett. 120, 186103
(2018).

[17] W. Chen, Y. Chen, and W. Liu, Phys. Rev. Lett. 122, 153907
(2019).

[18] W. Ye, Y. Gao, and J. Liu, Phys. Rev. Lett. 124, 153904 (2020).
[19] X. Yin, J. Jin, M. Soljačić, C. Peng, and B. Zhen, Nature
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